Tag - Scheduler

Quick Setup Guide: SQL Server Replication
Jan 12, 2024

Setting up replication in SQL Server can be a powerful way to ensure data consistency and availability across multiple servers. In this step-by-step guide, we'll walk through the process of configuring replication on SQL Servers.   Step 1: Understand Replication Types Before diving into configuration, it's crucial to understand the types of replication available in SQL Server.  Snapshot Replication: Takes a snapshot of the data at a specific point in time. Transactional Replication: Replicates changes in real-time as they occur. Merge Replication: Allows bidirectional data synchronization between servers. Choose the replication type that aligns with your specific needs and database architecture.   Step 2: Prepare Your Environment Ensure that your SQL Server environment is ready for replication. This involves verifying that you have the necessary permissions and establishing proper connectivity between the SQL Server instances. Remember that replication involves three key components: Publisher, Distributor, and Subscribers. The Distributor can be on the same server as the Publisher or a separate server.   Step 3: Configure Distributor If a Distributor isn't already set up, proceed to configure one. This involves specifying the server that will act as the Distributor and setting up distribution databases. Use either SQL Server Management Studio (SSMS) or T-SQL scripts for this configuration.   Step 4: Enable Replication on the Publisher 1. Open SSMS and connect to the Publisher. 2. Right-click on the target database and choose "Tasks" > "Replication" > "Configure Distribution." 3. Follow the wizard, specifying the Distributor configured in Step 3.   Step 5: Choose Articles Define the articles by selecting the tables, views, or stored procedures you want to replicate. This step allows you to fine-tune your replication by specifying data filters, choosing columns to replicate, and configuring additional options based on your specific requirements.   Step 6: Configure Subscribers 1. Connect to the Subscribers in SSMS. 2. Right-click on the Replication folder and choose "Configure Distribution." 3. Follow the wizard, specifying the Distributor and configuring additional settings based on your chosen replication type.   Step 7: Configure Subscription With the Distributor and Subscribers configured, it's time to set up subscriptions. 1. In SSMS, navigate to the Replication folder on the Publisher. 2. Right-click on the Local Publications and choose "New Subscriptions." 3. Follow the wizard to configure the subscription, specifying the Subscribers and defining any additional settings.   Step 8: Monitor and Maintain Regular monitoring and maintenance are essential for a healthy replication environment. - Use the Replication Monitor in SSMS to view the status of publications, subscriptions, and any potential errors. - Implement routine maintenance tasks such as backing up and restoring the replication databases.   Conclusion Configuring replication in SQL Server involves a series of well-defined steps. By understanding your replication needs, preparing your environment, and carefully configuring each component, you can establish a robust and reliable replication setup. Regular monitoring and maintenance ensure the ongoing efficiency and performance of your replication environment.

Quick CSV to SQL with Azure Databricks | MagnusMinds Blog
Apr 14, 2023

In this blog, we will explore Azure Databricks, a cloud-based analytics platform, and how it can be used to parse a CSV file from Azure storage and then store the data in a database. Additionally, we will also learn how to process stream data and use Databricks notebook in Azure Data Pipeline.   Azure Databricks Overview Azure Databricks is an Apache Spark-based analytics platform that provides a collaborative workspace for data scientists, data engineers, and business analysts. It is a cloud-based service that is designed to handle big data and allows users to process data at scale. Databricks also provides tools for data analysis, machine learning, and visualization. With its integration with Azure Storage, Azure Data Factory, and other Azure services, Azure Databricks can be used to build end-to-end data processing pipelines.   Parsing CSV File from Azure BlobStorage to Database using Azure Databricks Azure Databricks can be used to parse CSV files from Azure Storage and then store the data in a database. Here are the steps to accomplish this:   Configure Various Azure Components 1. Create Azure Resource Group Image 1 2. Create Azure DataBricks Resource  Image 2 3. Create SQL Server Resource  Image 3 4. Create SQL Database Resource Image 4 5. Create Azure Storage Account  Image 5 6. Create Azure DataFactory Resource  Image 6 7. Launch Databricks Resource Workspace  Image 7 8. Create Computing Cluster  Image 8 9. Create New Notebook  Image 9   Parsing CSV File from Azure Storage to Database using Azure Databricks Azure Databricks can be used to parse CSV files from Azure Storage and then store the data in a database. Here are the steps to accomplish this: 1. Create a cluster: First, create a cluster in Azure Databricks as above. A cluster is a group of nodes that work together to process data. 2. Import all the necessary models in the databricks notebook  %python from datetime import datetime, timedelta from azure.storage.blob import BlobServiceClient, generate_blob_sas, BlobSasPermissions import pandas as pd import pymssql import pyspark.sql Code 1 3. Mount Azure Storage: Next, mount the Azure Storage account in Databricks as follows #Configure Blob Connection storage_account_name = "storage" storage_account_access_key="***********************************" blob_container = "blob-container" Code 2 4. Establish The DataBase Connection #DB connection conn = pymssql.connect(server='****************.database.windows.net', user='*****', password='*****', database='DataBricksDB') cursor = conn.cursor() Code 3 5. Parse CSV file: Once the storage account is mounted, you can parse the CSV file using the following code #get a list of all blob from the container blob_list = [] for blob_i in container_client.list_blobs(): blob_list.append(blob_i.name) # print(blob_list)      df_list = [] #Generate SAS key for each file and load to the dataframe  for blob_i in blob_list:     print(blob_i)     sas_i = generate_blob_sas(account_name = storage_account_name,                              container_name = blob_container,                              blob_name = blob_i,                              account_key = storage_account_access_key,                              permission = BlobSasPermissions(read=True),                              expiry = datetime.utcnow() + timedelta(hours=12))       sas_url = 'https://' + storage_account_name +'.blob.core.windows.net/' + blob_container + '/' +blob_i     print(sas_url)          df=pd.read_csv(sas_url)     df_list.append(df) Code 4 6. Transform and Store data in a database: Finally, you can store the data in a database using the following code #Truncate Table Sales Truncate_Query = "IF EXISTS (SELECT * FROM sysobjects WHERE name='sales' and xtype='U') truncate table sales" cursor.execute(Truncate_Query) conn.commit()   # SQL Query For Table Creation create_table_query = "IF NOT EXISTS (SELECT * FROM sysobjects WHERE name='sales' and xtype='U') CREATE TABLE sales (REGION  varchar(max),COUNTRY  varchar(max),ITEMTYPE  varchar(max),SALESCHANNEL  varchar(max),ORDERPRIORITY  varchar(max),ORDERDATE  varchar(max),ORDERID  varchar(max),SHIPDATE  varchar(max),UNITSSOLD  varchar(max),UNITPRICE  varchar(max),UNITCOST  varchar(max),TOTALREVENUE  varchar(max),TOTALCOST  varchar(max),TOTALPROFIT  varchar(max))IF NOT EXISTS (SELECT * FROM sysobjects WHERE name='sales' and xtype='U') CREATE TABLE sales (REGION  varchar(max),COUNTRY  varchar(max),ITEMTYPE  varchar(max),SALESCHANNEL  varchar(max),ORDERPRIORITY  varchar(max),ORDERDATE  varchar(max),ORDERID  varchar(max),SHIPDATE  varchar(max),UNITSSOLD  varchar(max),UNITPRICE  varchar(max),UNITCOST  varchar(max),TOTALREVENUE  varchar(max),TOTALCOST  varchar(max),TOTALPROFIT  varchar(max))" cursor.execute(create_table_query) conn.commit()   #Insert Data From Main DataFrame for rows in df_combined.itertuples(index=False,name=None):     row = str(list(rows))     row_data = row[1:-1]     row_data = row_data.replace("nan","''")     row_data = row_data.replace("None","''") insert_query = "insert into sales (REGION,COUNTRY,ITEMTYPE,SALESCHANNEL,ORDERPRIORITY,ORDERDATE,ORDERID,SHIPDATE,UNITSSOLD,UNITPRICE,UNITCOST,TOTALREVENUE,TOTALCOST,TOTALPROFIT) values ("+row_data+")"     print(insert_query)     cursor.execute(insert_query) conn.commit() Code 5 As, Shown here The data from all the files is loaded to the SQL server Table Image 10   Azure Databricks notebook can be used to process stream data in Azure Data Pipeline. Here are the steps to accomplish this: 1. Create a Databricks notebook: First, create a Databricks notebook in Azure Databricks. A notebook is a web-based interface for working with code and data. 2. Create a job: Next, create a job in Azure Data Factory to execute the notebook. A job is a collection of tasks that can be scheduled and run automatically. 3. Configure the job: In the job settings, specify the Azure Databricks cluster and notebook that you want to use. Also, specify the input and output datasets. 4. Write the code: In the Databricks notebook, write the code to process the stream data. Here is an example code: #from pyspark.sql.functions import window stream_data = spark.readStream \     .format("csv") \     .option("header", "true") \     .schema("<schema>") \     .load("/mnt/<mount-name>/<file-name>.csv")   stream_data = stream_data \     .withWatermark("timestamp", "10 minutes") \     .groupBy(window("timestamp", "10 Code 6   How To Use Azure Databrick notebook in Azure Data Factory pipeline and configure the DataFlow Pipeline Using it. Image 11 1. Create ADF Pipeline  Image 12 2. Configure Data Pipeline  Image 13 3. Add Trigger To the PipeLine  Image 14 4. Configure the trigger  Image 15   These capabilities make Azure Databricks an ideal platform for building real-time data processing solutions. Overall, Azure Databricks provides a scalable and flexible solution for data processing and analytics, and it's definitely worth exploring if you're working with big data on the Azure platform. With its powerful tools and easy-to-use interface, Azure Databricks is a valuable addition to any data analytics toolkit.

SQL Server Login and Permissions Setup
Aug 09, 2021

1. To create a login SQL server, Navigate to Security > Logins   2. In the next screen, Enter    a. Login Name    b. Select SQL Server authentication    c. Enter Password for MS SQL create a user with a password   You can also create a login using the T-SQL command for SQL server create login and user.    CREATE LOGIN MyLogin WITH PASSWORD = MsSQL   3. Give Full Access for Demo Login   Login is created If we refresh the Logins, then we can view Login.   How To Create a User? You can use any of the following two ways:      · Using T-SQL      · Using SQL Server Management Studio   Providing limited access only to a certain Database You will be creating a user for the Events27_production database.   1. Connect to SQL server to create a new user       a. Connect to SQL Server then expand the Databases folder from the Object          Explorer.       b. Identify the database for which you need to create the user and expand it.       c. Expand its Security folder.       d. Right-click the Users folder then choose "New User…"    2. Enter User details, you will get the following screen,      a. Enter the desired Username      b. Enter the Login name (created earlier)      User is created for that specific Database.   Create User using T-SQL     create user <user-name> for login <login-name>     create user DemoUser for login Demo   Assigning limited permission to a user in SQL Server Permissions refer to the rules that govern the levels of access that users have on the secured SQL Server resources. SQL Server allows you to grant, revoke and deny such permissions. There are two ways to give SQL server user permissions:  1. Connect to your SQL Server instance and expand the folders from the Object Explorer as shown below. Right-click on the name of the user   2. In the next screen,     a. Click the Securable option from the left.     b. Click on Search   3. In the next window,     a. Select "All Objects belonging to the Schema."     b. Select Schema name as "dbo" 4. Grant or Revoke permission of a specific table or DB object       a. Identify Table you want to Grant Permission       b. In Explicit Permission select Grant   The user DemoUser is granted SELECT permission on final_backup_tidx_sctionSponsors.   Grant Permissions using T-SQL use <database-name> grant <permission-name> on <object-name> to <username\principle>   Use Events27_production Go Grant Select on final_backup_tidx_sctionSponsors to DemoUser 5. Providing ROLE to a specific user:     a. In the object explorer expand the databases and security folder.     b. Expand Roles and right-click on Database Role.     c. Click on New database role. Then a new pop-up window is open.     d. In the General tab enter the role name and click on ok.  6. Refresh the roles. In below screenshot shows the role   Remove Login from SQL Server:    1. To drop login SQL server, Navigate to Security > Logins    2. Select the desired login and click on Delete     Drop Login using T-SQL     DROP LOGIN Demo;  

Mastering SSIS Data Flow Task Package
Jul 27, 2020

In this article, we will review how to create a data flow task package of SSIS in Console Application with an example. Requirements Microsoft Visual Studio 2017 SQL Server 2014 SSDT Article  Done with the above requirements? Let's start by launching Microsoft Visual Studio 2017. Create a new Console Project with .Net Core.  After creating a new project, provide a proper name for it. In Project Explorer import relevant references and ensure that you have declared namespaces as below: using Microsoft.SqlServer.Dts.Pipeline.Wrapper; using Microsoft.SqlServer.Dts.Runtime; using RuntimeWrapper = Microsoft.SqlServer.Dts.Runtime.Wrapper;   To import above namespaces we need to import below refrences.   We need to keep in mind that, above all references should have same version.   After importing namespaces, ask user for the source connection string, destination connection string and table that will be copied to destination. string sourceConnectionString, destinationConnectionString, tableName; Console.Write("Enter Source Database Connection String: "); sourceConnectionString = Console.ReadLine(); Console.Write("Enter Destination Database Connection String: "); destinationConnectionString = Console.ReadLine(); Console.Write("Enter Table Name: "); tableName = Console.ReadLine();   After Declaration, create instance of Application and Package. Application app = new Application(); Package Mipk = new Package(); Mipk.Name = "DatabaseToDatabase";   Create OLEDB Source Connection Manager to the package. ConnectionManager connSource; connSource = Mipk.Connections.Add("ADO.NET:SQL"); connSource.ConnectionString = sourceConnectionString; connSource.Name = "ADO NET DB Source Connection";   Create OLEDB Destination Connection Manager to the package. ConnectionManager connDestination; connDestination= Mipk.Connections.Add("ADO.NET:SQL"); connDestination.ConnectionString = destinationConnectionString; connDestination.Name = "ADO NET DB Destination Connection";   Insert a data flow task to the package. Executable e = Mipk.Executables.Add("STOCK:PipelineTask"); TaskHost thMainPipe = (TaskHost)e; thMainPipe.Name = "DFT Database To Database"; MainPipe df = thMainPipe.InnerObject as MainPipe;   Assign OLEDB Source Component to the Data Flow Task. IDTSComponentMetaData100 conexionAOrigen = df.ComponentMetaDataCollection.New(); conexionAOrigen.ComponentClassID = "Microsoft.SqlServer.Dts.Pipeline.DataReaderSourceAdapter, Microsoft.SqlServer.ADONETSrc, Version=14.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"; conexionAOrigen.Name = "ADO NET Source";   Get Design time instance of the component and initialize it. CManagedComponentWrapper instance = conexionAOrigen.Instantiate(); instance.ProvideComponentProperties();   Specify the Connection Manager. conexionAOrigen.RuntimeConnectionCollection[0].ConnectionManager = DtsConvert.GetExtendedInterface(connSource); conexionAOrigen.RuntimeConnectionCollection[0].ConnectionManagerID = connSource.ID;   Set the custom properties. instance.SetComponentProperty("AccessMode", 0); instance.SetComponentProperty("TableOrViewName", "\"dbo\".\"" + tableName + "\"");   Reinitialize the source metadata. instance.AcquireConnections(null); instance.ReinitializeMetaData(); instance.ReleaseConnections();   Now, Add Destination Component to the Data Flow Task. IDTSComponentMetaData100 conexionADestination = df.ComponentMetaDataCollection.New(); conexionADestination.ComponentClassID = "Microsoft.SqlServer.Dts.Pipeline.ADONETDestination, Microsoft.SqlServer.ADONETDest, Version=14.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"; conexionADestination.Name = "ADO NET Destination";   Get Design time instance of the component and initialize it. CManagedComponentWrapper instanceDest = conexionADestination.Instantiate(); instanceDest.ProvideComponentProperties();   Specify the Connection Manager. conexionADestination.RuntimeConnectionCollection[0].ConnectionManager = DtsConvert.GetExtendedInterface(connDestination); conexionADestination.RuntimeConnectionCollection[0].ConnectionManagerID = connDestination.ID;   Set the custom properties. instanceDest.SetComponentProperty("TableOrViewName", "\"dbo\".\"" + tableName + "\"");   Connect the source to destination component: IDTSPath100 union = df.PathCollection.New(); union.AttachPathAndPropagateNotifications(conexionAOrigen.OutputCollection[0], conexionADestination.InputCollection[0]);   Reinitialize the destination metadata. instanceDest.AcquireConnections(null); instanceDest.ReinitializeMetaData(); instanceDest.ReleaseConnections();   Map Source input Columns and Destination Columns foreach (IDTSOutputColumn100 col in conexionAOrigen.OutputCollection[0].OutputColumnCollection) {     for (int i = 0; i < conexionADestination.InputCollection[0].ExternalMetadataColumnCollection.Count; i++)     {         string c = conexionADestination.InputCollection[0].ExternalMetadataColumnCollection[i].Name;         if (c.ToUpper() == col.Name.ToUpper())         {             IDTSInputColumn100 column = conexionADestination.InputCollection[0].InputColumnCollection.New();             column.LineageID = col.ID;             column.ExternalMetadataColumnID = conexionADestination.InputCollection[0].ExternalMetadataColumnCollection[i].ID;         }     } }   Save Package into the file system. app.SaveToXml(@"D:\Workspace\SSIS\Test_DB_To_DB.dtsx", Mipk, null);   Execute package. Mipk.Execute(); Conclusion In this article, we have explained one of the alternatives for creating SSIS packages using .NET console application. In case you have any questions, please feel free to ask in the comment section below.   RELATED BLOGS: Basics of SSIS(SQL Server Integration Service)

Backup Scheduling in SQL Server Express
Sep 20, 2019

Have you ever attempted to set up an automated backup of your SQL Server Express Edition and found that there’s no SQL Server Agent where you can schedule the job which will took a backup of your database. Alas, the world does not end there and you don't need to pay extra bucks just to have the back up via an SQL Agent which is available only to Standard and Enterprise editions. There are many options to automate the backup job which runs on a specific time and does not require manual intervention. Here, we will learn how to do it via SQL Command using batch file and Windows in-build Task Scheduler. Hope, you may find this useful. Create a BAT(batch) file to execute the command to take a backup of Database and save it. echo off :: -------------------------------------------------- :: clear console cls :: -------------------------------------------------- :: Define variables set SERVERNAME=YOUR_SERVER_NAME set DATABASENAME=DATABASE_NAME set MyTime=%TIME: =0% set MyDate=%DATE:~-4%.%DATE:~7,2%.%DATE:~4,2%.%MyTime:~0,2%.%MyTime:~3,2%.%MyTime:~6,2% set FileName=%DATABASENAME%_%MyDate%.bak set BAK_PATH=DIRECTORY_PATH set DEST_FILE=%BAK_PATH%%FileName% :: -------------------------------------------------- :: BACKUP Database sqlcmd -E -S %SERVERNAME% -d master -Q "BACKUP DATABASE [%DATABASENAME%] TO DISK = N'%DEST_FILE%' WITH INIT , NOUNLOAD , NAME = N'%DATABASENAME% backup', NOSKIP , STATS = 10, NOFORMAT" :: -------------------------------------------------- :: Optional Part :: -------------------------------------------------- :: Zip file 7z a -tzip "%DEST_FILE%.zip" "%DEST_FILE%" :: -------------------------------------------------- :: Delete unziped file DEL "%DEST_FILE%"   “SERVERNAME” is the name of SQL Server physical machine. “DATABASENAME” is the database which will be backup. “FileName” sets as a database name and append date which has .bak extension  “BAK_PATH” is the path in which a database backup file will be saved. “DEST_FILE” is use backup path and file name. After defining all the variables database backup will be generated and save as zip file in “DEST_FILE” path and at the end, the unzipped file will be deleted from “DEST_FILE” Now, it's time to schedule this created batch file in #1 Start Menu -> Task Scheduler -> Run as administrator Click on Create Task... from the right bar and configure it with Triggers and Actions  

magnusminds website loader